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EXECUTIVE SUMMARY
This deliverable describes the experimental validation of a fault detection and diagnosis (FDD) method within theTRI-HP project. A self-learning FDD for variable speed heat pump was developed previously and validated withsimulated data. In the present work a series of faults were emulated in a real 10 kW variable-speed water-to-waterheat pump developed within the project using propane as a refrigerant. The considered emulated faults were:evaporator fouling, liquid-line restriction, compressor valve leakage, refrigerant overcharge and refrigerant under-charge. A comparison between those faults and the no fault situation was made to obtain useful parameters forfault identification. The variables compared, also called features, were the Coefficient of performance (COP), theelectrical power consumption, heating power, subcooling, superheating, evaporation and condensation tempera-tures, discharge line and liquid line refrigerant temperatures, refrigerant mass flow and compressor speed. Thoseexperimental test update the results obtained using simulated data regarding the fault impact on different heatpump variables. In general, every fault decreases the COP and increases the electrical power consumption. Theevaporator fouling and liquid line restriction were the faults that have a lower and higher degradation effect on theCOP, respectively.
The FDD consist of different modules: the steady-state detector, the input space, the regression model and thediagnosis module. The steady-state detector eliminates non-steady data to increase the prediction efficiency andhas worked correctly during the validation. The input space module classifies the data in groups defined by thedriving variables. For the validation with simulated data, those driving variables where the compressor speed, thecondenser outlet temperature and evaporator inlet temperature. During the experimental tests, the compressorspeed changed causing a failure on the algorithm, since it was not able to differentiate if the speed changed dueto a fault or due to a change in the heat demand. Therefore, the compressor speed was changed for the condenserinlet water temperature as a driving variable. The regression model represents the heat pump behavior in normalconditions.
The detector was trained with 50 hours of data corresponding to 42 hours of dynamic conditions, 6 and 2 hoursof static tests at 10.2 kW and 12.3 kW respectively. For dynamic conditions, a virtual model developed in TRNSYSemulated the demand and the heat source of a residential building in Zurich climate. Once trained, the algorithmpredictions were compared with the heat pump measurements. If the residual between both was larger thanthe training error margin this was an indication of a possible fault. To avoid the false alarms, the possible faultindication must be present 80 % of the time for a 10 minutes period. When a fault is detected a warning flag istriggered. After that, a comparison of the trends of the features is made to diagnose which fault is occurring. Thediagnose chart developed previously with simulation data does not work for the current heat pump because of thedifferences between the simulation and experimental trends. Because of that, the diagnose chart was updatedwith the obtained experimental trends.
The algorithm detects COP drifts of 7 % in 10 minutes. The detector has high accuracy as shows no false alarmsduring the tests. The diagnosis module, after the update, could diagnose each fault, except evaporator foulingwhich was detected as a fault, but without a diagnose.
The FDD run in parallel during those tests giving real-time information about the heat pump soundness. Thealgorithm run from an industrial computer located in the laboratory. At the same time, it was running in a pocket-size computer called Raspberry Pi [1]. The low computational need of the algorithm allows us to implement it inportable platforms.
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LIST OF ACRONYMS
COP Coefficient of performance
CVL compressor valve leakage
DT Detection time
EF evaporator fouling
FAR false alarm rate
FDD fault detection and diagnosis
FI fault intensity
FIR fault impact ratio
HVAC heating, ventilation and air conditioning
LL liquid line restriction
lpm liters per minute
MDR Missed detection rate
MR Misdiagnosis rate
OC refrigerant overcharge
RMSE root-mean-square error
rps revolutions per second
SSD steady state detector
UC refrigerant undercharge
VSHP variable speed heat pump
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1 INTRODUCTION
The increasing deployment of heat pumps in buildings is expected to contribute to a reduction of energy consump-tion as the efficiency of these systems is improved compared to alternative heating, ventilation and air condition-ing (HVAC) solutions. It is critical to maintain heat pump performance, as fault conditions can affect their optimaloperation and reduce their energy efficiency [2]. Field surveys point to significant losses in the performance ofheat pumps installed in buildings, with 20% to 50% of them operating at 70 % to 80% efficiency or lower thantheir design efficiency [3]. Fault operation resulting from anomalous control operation and service deficiencies orcomponents degradation may lead to a lower heat pump performance and increase in power consumption. Withinthis context, the development of FDD systems for heat pumps is aimed at monitoring, detecting and identifyingoperation faults. The development of such fault monitoring systems requires the availability of experimental andsimulated data for training and validating FDD methods under fault-free and faulty conditions.
Comparison among different works has shown significant similarity regarding system behaviour for fixed speedcompressor heat pumps under fault conditions. However, only a few studies have focused on analysing the in-fluence of faults on variable speed heat pump performance. These few studies indicate that the behaviour ofthese systems substantially differs from that of fixed speed heat pumps, due to the regulation of the compressoroperation, which leads to a different degree of fault impact on the operation variables. Requirements by interna-tional regulations to increase efficiency are leading to a replacement of fixed-speed heat pumps by more efficientinverter-driven heat pumps in the residential market. Thus, it is necessary to conduct more research to investi-gate the influence of faulty operation on the performance of variable speed systems and derive methods for thedevelopment of FDD methodologies specific to these systems.
One challenge in assessing the impact of faults on variable speed heat pumps is the lack of literature publicationson the influence of faulty operation on the operating variables of this type of equipment. In order to solve thisissue, in this work, an experimental campaign with a variable speed heat pump was made. A 10 kW variable speedpropane heat pump was tested with no fault present and with emulated faults. The impact of each fault wasdetermined. In this way, the FDD developed has been validated with real data. The fault test took into accountstatic and dynamic conditions. For the dynamic tests, a virtual model provided dynamic demand to test the FDDunder more realistic conditions.
This deliverable is structured in 4 sections. The first one describes the test facility and the experimental procedurefor emulating each fault. The second compares the fault impact in different heat pump features. The third sectionshows the results and the validation of the different parts involved in the FDD. The last section exposes theconclusions and the future steps for the FDD.
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2 METHODOLOGY
This section explains the details of the experimental campaigns for testing the performance of the FDD. First adescription of the test facility and test rig is provided. Next, the static tests made for rating the performance ofthe heat pump are summarized. Finally, the faults tested and the emulation procedure are explained.
2.1 THE SEMI-VIRTUAL ENERGY INTEGRATION LABORATORY - SEILAB
2.1.1 General introduction

The SEILAB [4] provides advanced methods to assess the development and integration of renewable energy solu-tions and innovative thermal and electrical equipment that are designed to improve energy efficiency in buildingsand energy systems.
It is equipped with cutting-edge technology comprising systems for energy generation, heat and cold storage andstate-of-the-art facilities for testing HVAC equipment and the interaction of energy systems with the grid.
The operation is based on a semi-virtual testing approach, which allows for real equipment to be operated as afunction of the behaviour of a dynamic virtual model (hardware-in-the-loop concept) that emulates the thermalloads of heat sink and heat source.
The SEILAB is pioneer in addressing the smart integration of electrical and thermal components and is a leadingexperimental facility for improving the development of Net Zero Energy Buildings and Energy Flexible buildings.
2.1.2 Description of test facilities

2.1.2.1 Test benches and primary heat exchangers

Each hydraulic loop comprises one test bench and one or more primary heat exchangers. The function of testbenches is to measure pressure and temperature, and to measure and control flow. One of the temperature mea-surements is used for loop temperature control in the primary heat exchanger unit. Primary heat exchanger unitsinclude as well the heat exchanger itself and a circulating pump driven by a frequency inverter.
Flow and temperature meters are regularly calibrated to allow an accurate calculation of thermal power. Table 2.1indicates type and precision of the different measurement elements.

Table 2.1: SEILAB measurements precisionMagnitude Type PrecisionPressure Piezo-resistive ±1%Flow Electromagnetic ±0.5%Temperature 3- or 4-wire Pt100 ±0.25 KElectrical power Multimeter ±1%
Three-way mixing valves with fast magnetic actuator are used to control flow and temperature. One of the inletsis a by-pass of the tested equipment (flow) or the heat exchanger (temperature).
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Heat transfer fluid is soft water free of suspended solid particles. Pipes are insulatedwith synthetic rubbermaterial(30 mm).
2.1.2.2 Data acquisition and control

The tests performed in SEILAB are supervised and controlled by a data acquisition and control system created withthe software LabVIEW (Figure 2.1). A custom interface ismade for each project, adapting it to the necessities. Thisinterface can be connected to transient simulation software TRNSYS to simulate dynamic conditions. The propaneheat pump with a desuperheater is connected with this interface through a Modbus TCP/IP connection for controland monitoring purposes. The FDD algorithm was coded in Python and ran in an industrial computer exchangingdata with the laboratory interface. In parallel, a Raspberry Pi [1] worked with the same algorithm. The results arethe same for both implementations, showing that the algorithm requires low computational resources.

Figure 2.1: TRI-HP project laboratory interface
2.1.2.3 Propane safety system

Due to the flammability of the selected refrigerant R-290 (propane), there is a safety system in the SEILAB to preventthe formation of flammable/explosive atmospheres. It includes automatic gas detection and automatic or manualextraction to a safe area along with measures to remove ignition sources and to limit hazardous consequences.
2.2 TESTING METHOD
2.2.1 Performance rating tests

SPF first tested the propane heat pump under conditions defined in the European standards EN 14511:2018, EN14825:2016 and EN 16147:2017. Some of these tests are replicated in SEILAB to ensure that the refrigeration chargeor other boundary conditions of the heat pump have not affected the performance. The heat pump was designed
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to work with near-zero temperatures in the evaporator (average evaporator temperature in the range 2 ◦C to 8 ◦C).Therefore, this circuit must be filled with brine. However, the experimental campaign in SEILAB was designed towork with average evaporator temperatures in the range of 6 ◦C to 14 ◦C. Because of that, the evaporator circuitwas filled with just water at SEILAB. Taking this into account, static tests at SEILAB have different conditions thatthe ones in SPF.
The standard EN 14511:2018 for space heating test asks for a temperature of 0 ◦C in the evaporator inlet for brineheat pumps. For water heat pumps, this temperature is 10 ◦C. Those two temperatures are the "rating conditions"of the standard. This means fixed supply and return temperatures in evaporator and condenser while the flowsare the ones that maintain a specific temperature difference in the evaporator and condenser. Then, the standarddefines the "application conditions" where the supply temperatures are fixed, the flows are those obtained in therating conditions and the return temperatures are not controlled. The frequency of the compressor was set to70 revolutions per second (rps), corresponding to 10 kW of heating capacity. Figure 2.2 shows a comparisonbetween IREC and SPF results. As can be seen, the results of both facilities are similar and follow the sametrend.

Figure 2.2: Space heating rating tests for compressor speed of 70 rps. The series name represent the supply andreturn temperatures of the condenser.
2.2.2 Fault tests

The FDD is validated with the emulation of common faults in heat pumps. The selected faults for the validation arerefrigerant undercharge (UC), refrigerant overcharge (OC), compressor valve leakage (CVL), liquid line restriction(LL) and evaporator fouling (EF).
The heat pump has been provided without compressor speed control. However, it was implemented the possibilityto send a frequency set point to the compressor. The FDD designed is specific for variable speed heat pump(VSHP). Because of that, a PID control has been developed using the condenser outlet water temperature to adaptthe speed of the compressor in order to reach the supply temperature set-point. All the faults were emulated inthree different conditions: two static tests and one dynamic test.

5 Deliverable D6.3



For the static tests, return temperature in the condenser was set to 40 ◦C and 39 ◦C, corresponding to demandsof 10.2 kW and 12.3 kW, respectively. The supply temperature of the heat pump was set to 45 ◦C, the evaporatorreturn temperature to 10 ◦C. The water flows of the evaporator and condenser were set to 40 lpm and 30 lpm,respectively. Table 2.2 shows those conditions.
Table 2.2: Static tests conditions. From the water side: condenser outlet temperature (Tcond,out), condenser inlettemperature (Tcond,in), evaporator inlet temperature (Tevap,in),condenser water flow (V̇cond) and evaporator waterflow (V̇evap).Heating Load (kW) Tcond,out (ºC) Tcond,in (ºC) Tevap,in (ºC) V̇cond (lpm) V̇evap (lpm)10.2 45 40 10 30 4012.3 45 39 10 30 40
The dynamic test uses a virtual model of a 100 m2 fully insulated single-storey detached house with boreholes.The climate selected is Zurich. Figure 2.3 shows the expected temperatures of the circuits and the thermal loads.The model read the supply temperatures and the water flows in the evaporator and condenser and send the returntemperatures for both.

Figure 2.3: Graph with the demand (Qcond), inlet and outlet evaporator temperatures (Tevap,in,Tevap,out) and inletand outlet condenser temperatures (Tcond,in,Tcond,out) for the TRNSYS model with the Zurich climate from thewater side.
The desuperheater and the subcooler were not used in the static and dynamic tests. Each fault was tested in bothdynamic and static conditions. An additional no-fault test is made in every set-up to serve as a reference.
2.2.2.1 Evaporator fouling

The evaporator fouling represents a circulating pump malfunction or the accumulation of dirt in the circuit thatreduces the evaporator flow. This fault is emulated reducing the water flow of the evaporator below the nominal.The indicator fault intensity (FI) is used to characterize each fault stage. The FIEF is shown in Equation 2.1.

FIEF =
V̇fault − V̇nom

V̇nom

(2.1)
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where V̇fault is the evaporator water flow for the current fault level and V̇nom is the water flow for the no-faultcondition. Taking into account that the V̇nom is 40 lpm, the Table 2.3 shows the experimental plan followed for thestatic tests.
Table 2.3: EF static tests experimental plan. The duration of each test is one hour.Code Load (kW) FI Evaporator water flow (lpm)EF10.1 10.2 -0.100 36.0EF10.2 10.2 -0.157 33.7EF10.3 10.2 -0.214 31.4EF10.4 10.2 -0.271 29.2EF10.5 10.2 -0.328 26.9EF10.6 10.2 -0.385 24.6EF10.7 10.2 -0.442 22.3EF10.8 10.2 -0.500 20.0EF12.1 12.3 -0.100 36.0EF12.2 12.3 -0.157 33.7EF12.3 12.3 -0.214 31.4EF12.4 12.3 -0.271 29.2EF12.5 12.3 -0.328 26.9EF12.6 12.3 -0.385 24.7EF12.7 12.3 -0.442 22.3EF12.8 12.3 -0.500 20.0

2.2.2.2 Compressor valve leakage

The compressor valve leakage fault represents the bypass of refrigerant between the high and low-pressure sides.This leakage can appear in the compressor or in the reversing valves. A pipe that bypasses the suction anddischarge lines of the compressor was installed to emulate the fault. A valve allows to open or close the line.Figure 2.4 shows a schematic of the bypass and a picture of the valve with an indicator of the turned angle.
The FI for this fault is shown in Equation 2.2.

FICVL =
ṁrfault − ṁrnom

ṁrnom
(2.2)

Where ṁrfault is the refrigerant mass flow for the fault condition and ṁrnom is the refrigerant mass flow when nofault is present. As the heat pump has a variable-speed compressor, ṁrnom depends on the speed of the compres-sor. A correlation between compressor speed and refrigerant mass flow was obtained by running the compressorat different speeds without fault present. The test was made for both capacities, obtaining Equation 2.3. Thisequation relates the compressor frequency in rps and the refrigerant mass flow in g/s for no-fault conditions.This equation is used to give an approximate value of the FI. It may lose precision with faults present or differentcapacities.
mrnom = 0.5206 · freq + 0.7082 (2.3)
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(a)

(b)

Figure 2.4: Scheme and picture of the bypass between suction and discharge lines of the compressor. Anindicator was made to serve as a goniometer.
The experimental plan is shown in Table 2.4. During the experimental campaign, the correlation between frequencyand refrigerant mass flow was not known. Because of this, each fault step was reproduced by turning the valve acertain amount of degrees without knowing the FI exactly. The valve count with amaximum stroke of 90°, meaningthat there is a lowmargin for each fault step. Because of that, different fault levels have the same FI. The FI columnwas obtained from Equatoin 2.3 .

Table 2.4: CVL static tests experimental plan. The duration of each test is one hour.Code Load (kW) Valve stroke (°) FICVL10.1 10.2 9.0 0.00CVL10.2 10.2 13.5 0.00CVL10.3 10.2 18.0 0.00CVL10.4 10.2 22.5 -0.04CVL10.5 10.2 27.0 -0.29CVL10.6 10.2 31.5 -0.37CVL10.7 10.2 36.0 -0.65CVL12.1 12.3 13.5 -0.02CVL12.2 12.3 18.0 -0.02CVL12.3 12.3 22.5 -0.02CVL12.4 12.3 27.0 -0.13CVL12.5 12.3 31.5 -0.38CVL12.6 12.3 34.0 -0.61
2.2.2.3 Liquid line restriction

The liquid line restriction appears when the filter located in the liquid line is clogged. To emulate this fault, themanufacturer placed a restriction valve in the liquid line to increase the pressure drop. Figure 2.5 shows a pictureof the restriction valve with an indicator to know the turned degrees.
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Figure 2.5: Picture of the restriction valve in the liquid line with an indicator to serve as a goniometer.
The FI of this fault is related to the pressure drop variation of the liquid line as Equation 2.4 shows.

FILL =
∆PLL

∆Pnom
(2.4)

Where ∆PLL represents the liquid line pressure drop with fault and ∆Pnom the liquid line pressure drop withoutfault.
The experimental plan is showed in Table 2.5. The fault emulation procedure is the same as the CVL fault, turningthe corresponding valve. The planning takes into account the number of turned degrees of the valve but not the FI.This valve has a maximum stroke of three turns and three-quarters. There was not any change in the heat pumpuntil three and a half turns was made. Therefore, the degrees showed in the table start from this position.
2.2.2.4 Refrigerant over-and-under-charge

The refrigerant overcharge fault may appear during a maintenance service because the heat pump is filled withmore refrigerant than recommended by the manufacturer. To emulate it, the heat pump was overcharged 10%over the nominal amount. The refrigerant undercharge may appear due to a refrigerant leakage or a maintenanceservice that reduces the refrigerant charge below the manufacturer’s recommendation. To emulate it, the heatpump was undercharged a 10% and a 20% of the nominal amount. The FI is the relative difference between thecurrent and the nominal charge, as Equation 2.5 shows.

FIOC,UC =
mrfault − mrnom

mrnom
(2.5)
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Table 2.5: LL static tests experimental plan. The duration of each test is one hour, except LL12.5 that is halfhour. The valve stroke column takes into account that the initial valve position is at three and a half turns.Code Load (kW) Valve stroke (°)LL10.1 10.2 45.0LL10.2 10.2 54.0LL10.3 10.2 58.5LL10.4 10.2 63.0LL10.5 10.2 67.5LL10.6 10.2 72.0LL12.1 12.3 54.0LL12.2 12.3 58.5LL12.3 12.3 63.0LL12.4 12.3 67.5LL12.5 12.3 72.0
Where mrfault is the propane charge for faulty conditions, and mrnom is the nominal propane charge. Table 2.6shows the experimental plan.

Table 2.6: OC and UC static tests experimental plan. The duration of each test is one hour.Code Load (kW) FIOC10.1 10.2 0.1OC12.1 12.3 0.1UC10.1 10.2 -0.1UC10.2 10.2 -0.2UC12.1 12.3 -0.1UC12.2 12.3 -0.2
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3 FAULT IMPACT ON HEAT PUMP PERFORMANCE
From the different measurements of a heat pump, the ones more useful for the FDD are called features. Thefeatures selected for the present work are the COP, Wcomp, Qheat, Tsc, Tsh, Tevap, Tcond, Tll, Tco, mr and f. Table 3.1shows the nomenclature of the different measurements.

Table 3.1: Features from the heat pump.Measurement DescriptionWcomp Compressor electrical power consumptionf Compressor frequencyTco Compressor discharge temperatureTll Liquid-line temperaturemr Refrigerant mass flow rateCOP Coefficient of performanceQheat Thermal powerTsc SubcoolingTsh SuperheatingTevap Evaporation temperatureTcond Condensation temperature
For the development of the diagnosis module of the FDD, a review of heat pump fault testing and simulationon VSHP was made [5, 6, 7]. To extend the knowledge on the performance of inverter-driven units under faultyconditions, simulations were performed for a variable-speed, water-to-water, propane heat pump. The heat pumpmodelled was developed using Modelica object-oriented programming language in Dymola simulation environ-ment (Dassault Systems, Vélizy-Villacoublay, France). From the literature and simulation analysis, the expectedtrends of a heat pump are showed in Table 3.4 in the grey shadowed rows. This results were applied to a TRNSYSsimulation model of an air-to-water, variable speed heat pump with R407. A parametrization method was used toobtain faulty data from the TRNSYS model. The diagnosis module was validated with the simulation results.
Tables 3.2 and 3.3 shows the average values of each feature for the 10.2 kW and 12.3 kW static tests, respectively.In some tests as in CVL10.1, the COP values are higher than in the no fault case because of slight changes in thetest condition as a warmer desuper-heater.
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Table 3.2: Average values for different features of the heat pump during the 10.2 kW static tests.COP Wcomp Qheat Tsc Tsh Tevap Tcond Tco Tll mr fUnits (kW) (kW) (K) (K) (◦C) (◦C) (◦C) (◦C) (g/s) (rps)NF10 4.40 2.20 10.20 2.0 11.0 4.5 46.8 63.4 44.6 29.60 57EF10.1 4.41 2.10 10.15 2.0 11.0 4.5 46.5 63.3 44.4 29.48 57EF10.2 4.40 2.10 10.16 1.9 11.0 4.3 46.5 63.4 44.5 29.47 57EF10.3 4.37 2.10 10.16 1.9 11.0 4.0 46.5 63.5 44.6 29.51 57EF10.4 4.34 2.10 10.17 2.0 11.0 3.8 46.5 63.6 44.4 29.58 58EF10.5 4.30 2.10 10.16 1.8 11.0 3.4 46.5 63.7 44.6 29.49 58EF10.6 4.26 2.20 10.15 1.9 11.0 3.2 46.5 63.9 44.5 29.47 59EF10.7 4.22 2.20 10.15 2.2 11.0 2.7 46.5 64.1 44.3 29.67 59EF10.8 4.16 2.20 10.16 2.2 11.0 2.2 46.5 64.3 44.2 29.65 60CVL10.1 4.46 2.14 10.16 2.1 11.0 4.8 46.8 63.2 44.6 29.39 56CVL10.2 4.46 2.14 10.16 1.8 11.0 4.8 46.5 63.2 44.6 29.44 56CVL10.3 4.46 2.14 10.16 1.7 11.0 4.8 46.5 63.2 44.6 29.41 56CVL10.4 4.31 2.21 10.14 2.2 10.7 5.0 46.5 64.1 44.2 29.30 58CVL10.5 3.43 2.82 10.14 6.7 9.8 5.4 46.8 74.2 40.2 27.36 72CVL10.6 3.12 3.12 10.16 7.0 9.9 5.5 47.0 80.2 40.1 26.50 78CVL10.7 3.50 2.78 5.93 4.2 9.7 9.9 44.3 100.5 40.1 13.86 73LL10.1 4.54 2.10 10.15 4.0 10.7 4.8 46.7 63.2 42.8 29.35 55LL10.2 4.10 2.33 10.15 8.4 11.0 0.9 48.3 68.4 40.0 27.97 60LL10.3 3.80 2.53 10.15 9.6 12.7 -1.8 49.5 72.8 40.0 27.32 63LL10.4 3.61 2.68 10.15 11.3 14.3 -3.3 51.2 76.9 40.1 26.74 66LL10.5 3.27 2.96 10.15 14.4 17.0 -6.0 54.3 84.9 40.1 25.83 70LL10.6 2.87 3.40 10.15 21.7 20.0 -8.8 61.7 98.2 40.1 24.28 73OC10 3.49 2.63 10.12 24.9 10.7 7.0 64.8 84.8 40.0 28.65 51

The quantitative results are synthesized in Table 3.4, which shows different features trends for each fault obtainedduring the experimental campaign. From the experimental campaign, we have determined that the compressorfrequency must be a key feature to take into account as it is one of the most affected parameters by the faults.However, in the literature analysis it was not taken into account. As can be seen, there are some discrepanciesbetween the literature and the experiments. In some cases, features that in the literature shows no change, areaffected in the tests. Those discrepancies are because of the scarce literature about experimental fault tests withvariable heat pumps. The only contradictory result is the Tsc, in LL is decreasing in the literature but increasing inthe tests. This trend is adapted from [8], from a fixed capacity, short tube orifice rooftop air conditioner. Differentheat pump technologies as water-to-water and air-to-air,or cooling and heating mode have different fault repercus-sions. Therefore, the present work is valid for water-to-water, heating mode heat pumps, but could not work withtranscritical cycles or other heat pump typologies. Below, there is an explanation of how each fault has affectedthe heat pump in the experimental campaign.
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Table 3.3: Average values for different features of the heat pump during the 12.3 kW static tests.COP Wcomp Qheat Tsc Tsh Tevap Tcond Tco Tll mr fUnits (kW) (kW) (K) (K) (◦C) (◦C) (◦C) (◦C) (g/s) (rps)NF12 4.39 2.60 12.30 4.1 8.7 4.1 46.9 61.9 42.6 35.90 69EF12.1 4.36 2.60 12.26 4.0 8.7 3.8 46.9 62.0 42.7 35.69 69EF12.2 4.34 2.60 12.26 4.0 8.7 3.6 46.9 62.0 42.7 35.76 69EF12.3 4.31 2.60 12.26 4.1 8.7 3.4 47.0 62.0 42.7 35.69 70EF12.4 4.28 2.64 12.27 4.1 8.8 3.1 46.9 62.2 42.6 35.71 70EF12.5 4.24 2.68 12.27 4.1 8.9 2.7 46.9 62.4 42.5 35.90 71EF12.6 4.20 2.70 12.27 4.2 9.4 2.3 46.8 62.8 42.4 35.89 72EF12.7 4.14 2.70 12.26 4.3 9.9 1.8 46.8 63.3 42.4 36.00 72EF12.8 4.08 2.80 12.26 4.5 10.2 1.2 46.8 63.7 42.3 36.14 73CVL12.1 4.39 2.59 12.25 4.1 8.6 4.1 47.0 61.9 42.7 35.75 69CVL12.2 4.39 2.59 12.26 4.0 8.6 4.1 46.9 61.8 42.8 35.76 69CVL12.3 4.38 2.58 12.25 4.7 8.5 4.2 47.0 62.1 42.2 35.65 69CVL12.4 3.90 2.90 12.24 6.5 8.7 4.5 47.0 66.3 40.5 35.10 76CVL12.5 3.04 3.60 11.73 8.3 9.5 4.8 47.3 82.5 39.2 30.08 92CVL12.6 2.31 3.36 8.27 7.2 10.6 5.0 46.2 105.0 39.2 18.47 89LL12.1 4.28 2.72 12.24 8.8 11.1 2.2 47.8 66.6 39.1 34.26 69LL12.2 3.83 3.07 12.28 10.7 11.9 -1.3 49.7 71.5 39.1 33.67 75LL12.3 3.57 3.30 12.28 13.2 13.9 -3.3 52.2 77.0 39.1 32.79 78LL12.4 3.35 3.52 12.26 15.8 15.4 -4.7 54.8 82.5 39.1 31.93 81LL12.5 3.02 3.93 12.30 21.2 17.8 -7.0 60.2 92.3 39.1 30.60 84OC12 3.57 3.28 12.22 25.7 9.9 6.8 64.6 83.5 39.1 34.76 62

Table 3.4: Trends of different features of the heat pump. Minus symbols are applied for decreasing trends. Plussymbols are applied for increasing trends. The results coming from the literature research (lit.) are greyshadowed.COP Wcomp Qheat Tsc Tsh Tevap Tcond Tco Tll mr fOC test - + = + + = + + + + + + - = -OC lit. - + = + + -CVL test - + + - + = = = + + - - + +CVL lit. - + = = + + -EF test - + = = = - = = = = +EF lit. - + = - +LL test - - + + = + + + + - - + + + + - - +LL lit. - + = - + +Criteria+ +, - - ±1 ±0.5 kW ±1 kW ±5 ◦C ±5 ◦C ±5 ◦C ±5 ◦C ±5 ◦C ±5 ◦C ±5 g/s ±15 rps+ , - ±0.1 ±0.1 kW ±0.2 kW ±2 ◦C ±2 ◦C ±2 ◦C ±2 ◦C ±2 ◦C ±2 ◦C ±2 g/s ±3 rps+,- ±1 ◦C ±1 ◦C ±1 ◦C ±1 ◦C ±1 ◦C ±2.5 ◦C ±50 g/s

The OC fault increases the liquid trapped in the condenser, raising the condensation temperature. The evaporationtemperature increases due to a 0.4 bars increase of the suction pressure. The subcooling and the compressor
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outlet temperatures increases. The refrigerant mass increase, reduces the speed of the compressor maintainingthe same mass flow in the circuit.
The CVL fault increases the pressure at the suction line while the discharge pressure remains the same. Tocompensate all the refrigerant that goes through the bypass, the compressor increases the speed, increasingthe power consumption and the compressor outlet temperature. The superheating is maintained by the expansionvalve but it increases for higher demands. For higher fault values, the refrigerant mass in the circuit is very lowand the demand can not be covered.
The EF reduces the evaporator pressure while the evaporator outlet temperature increases, remaining the sub-cooling the same and decreasing the evaporation temperature. The compressor speed increases to cover thedemand.
The LL causes an additional pressure loss between condensation pressure and suction pressure. This can leadto limited capacity of the expansion valve with the consequence of lower suction pressure and higher condensa-tion pressure. This increases the condensation temperature,the superheating and the subcooling while decreasesevaporation temperature. As the literature [7] results are for an air-to-air heat pump this could explain the discrep-ancies.
The UC fault was tested according to the experimental plan of section 2.2.2. A charge reduction of 10 and 20 %was made, but the pressure of the circuit remained very high. This could be an indicator of an additional faultas non-condensables present in the circuit due to the consecutive charge procedures or another underlying fault.Because of this, the results are not presented.
All the faults decreased the COP of the heat pump, being EF the fault that had less effect and LL the one that hadthe highest. As the heating power is usually not affected, the decrease in COP comes from an increase in electricpower consumption. The heating power could be maintained for all the faults except in the higher fault levels ofCVL.
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4 RESULTS ON THE VALIDATION OF THE FDD SYSTEM
4.1 INTRODUCTION
In this chapter, the validation of a FDD algorithm with the data obtained from the experimental fault emulation isshown. This algorithm has been previously developed and validated with simulation data. The algorithm consistsof different modules whose operation are described below.
The algorithm starts with the training phase in which the FDD learns the heat pump operation at fault free condi-tions. During the learning period of one week, the data measured will be filtered by the steady-state detector, sothat only the stationary points will be stored. After the training period, the stored data will be classified using pre-defined ranges for the independent features of the input space module as condenser outlet and inlet temperatureand evaporator inlet temperature, which are the input variables to the regression models. A regression model willbe trained for each of these regions of the input space. During the training, the root-mean-square error (RMSE) isobtained for each of the models and this value is used to define the error of the prediction.
Once the system has learnt normal operation for the specific heat pump, the monitoring phase starts. As in thelearning period, during this phase, measurements from the different sensors are filtered by the steady-state de-tector and the steady-state data is classified according to the input space structure. If the data has no associatedregression model, i.e., the data is beyond the limits of the data obtained during the training period, it will be storeduntil enough data points (equivalent to one hour of data) are stored for training the new region, re-activating self-training. If the data belongs to the data range from the learning phase, the corresponding regression model willpredict the features for the given input conditions at each time step. The features measured with the differentsensors and those predicted by the FDD regression model are compared, obtaining the residuals. If the residualsare above or below of the error margin, it is considered that the current measurements deviate from the no-faultbehaviour. However, outliers, fluctuations or measurement errors can deviate from the prediction, thus, for trig-gering a warning flag several deviations from ideal performance must be accumulated during a certain time. Onlywhen the fault ratio (rate of total number of events considered faulty over a sample) is above 80% a warning flagis triggered. In the event of a warning, the residual of each of the features with respect to the model predictionis used for fault identification using a trend chart method. The trend comparison of the different features is usedto diagnose the cause of the fault. Figure 4.1 shows a simplified scheme of the algorithm structure. With thereal time data, the steady state detector, input space, regression model, fault monitoring and fault diagnosis arevalidated running the algorithm in a computer and also in a Raspberry pi. As the test are isolated between them,the retraining is deactivated for the present work. For the same reason, the training data is fed to the algorithm ina file rather than in a real-time learning period.
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Figure 4.1: General scheme of the FDD algorithm.

4.2 STEADY STATE DETECTOR
The steady state detector eliminates the non-stationary data of the measurements to improve the results of theregression method. The steady state detector (SSD) developed works with the mean and the variance of a dataseries analyzing its trend in different data-windows.
Figure 4.2a shows the steady-state detection in the condenser load signal. The detection is relatively constantwith interruptions due to the detection criteria. Figure 4.2b shows the detection on a series with noise. As can beseen, the outlier is filtered by the detector. The detector is designed to prioritize noise filtering. However, it coulddiscard possible steady data.

(a) (b)

Figure 4.2: Detection of steady-state points in the condenser load signal. a) steady signal, b) signal with outliers.
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4.3 INPUT SPACE
The input space classifies the data to improve the accuracy of the regression model. The data is classified in athree-dimensional space defined by the driving variables of the heat pump. For an air-to-water heat pump, thosevariables are: the condenser outlet temperature, ambient temperature and the compressor speed. The drivingvariables are external to the heat pump operation. For a water-to-water heat pump, we selected the condenseroutlet and evaporator inlet temperatures and compressor speed. After some experiments, we realized that com-pressor speed is an internal control of the heat pump. The heat pump will adapt the compressor speed, trying toachieve the load requirements in the event of a fault. Therefore, if the compressor speed changes, the algorithmcan’t tell if it’s because of a load change or because of a fault. Therefore, instead of compressor speed we usethe condenser inlet temperature. Figure 4.3 shows the classification of the training data.

Figure 4.3: Three-dimensional space generated by the Input space module. The stars are the center of eachgroup. The points are the training data. The color scale is used in the Tcond,in axis.
4.4 REGRESSION METHOD AND FAULT DETECTION
4.4.1 Regression model training

The regression model was trained with heat pump data with no fault present. To obtain predictions for differentconditions, themodel was trainedwith the two static conditions (10.2 kWand 12.3 kW) and the dynamicmodel. Thedynamic test was two consecutive days with the TRNSYS simulation model explained in Section 2.2.2. However,the test was interrupted by an equipment disconnection and was retaken starting the simulation from the lastpoint. Figure 4.4 shows the COP values for the training series. The three different series were put together in asingle dataset and fed to the algorithm for training.
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Figure 4.4: COP data used for training the regression model. The signal from 0 h to 42 h correspond to thedynamic test, from 42 h to 48 h the 10.2 kW static test and the rest to 12.3 kW static test. The signal goes to 0 tomark each situation.
For the training data, three different clusters were trained, corresponding to each of the test conditions. Table 4.1shows each of these clusters and the error margin of the predictions. This margin is obtained as two times themaximum RMSE of the cluster training. This RMSE is the error between the training prediction and the trainingvalues. For these clusters, the error margin is below 0.26 units that represents a 5% drift for a 4.5 COP. Figure 4.5shows the training predictions for the cluster 1. The orange-shadowed area corresponds to the error margin of theprediction.

Table 4.1: Clusters obtained from the algorithm training.Cluster Tevap,in (ºC) Tcond,in (ºC) Tcond,out (ºC) error margin1 17 43 48.5 0.262 11 41 45.5 0.133 11 39 45.5 0.25
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Figure 4.5: Training results of a cluster. The orange-shadowed region represents the error margin of theprediction.

4.4.2 Fault detection

In order to validate the fault detection part of the FDD system under test, a set of indicators will be used. Theseindicators are:
False alarm rate (false alarm rate (FAR)): it represents the fraction of erroneous fault warnings with respect to thesum of non-faulty and erroneous detection by the FDD system. In the equation below False Positive representsraising a warning for a non-existent fault.

FAR =
False Positive

False Positive + True Negative
(4.1)

Missed detection rate (MDR): it represents the fraction of undetected faults with respect to the sum of detectedand undetected faults by the FDD system. In the equation of MDR below, a False Negative implies that under thepresence of a fault the algorithm does not raise any warnings.

MDR =
False Negative

False Negative + True Positive
(4.2)

The Accuracy indicator represents the fraction of correct fault warnings with respect to the total fault warningsgiven by the FDD system.

Accuracy =
True positive

True positive + False Positive
(4.3)
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The Detection time (DT) is time since the COP residual (difference between real and predicted COP) is higher than0.05 until the system raises a warning on COP drift.
DT = tCOPWarning − tfaultStart (4.4)

The Misdiagnosis rate (MR) indicator represents the capability of the FDD for correctly diagnose the faults de-tected. In the equation below False Diagnosis implies that a fault is detected but the diagnosis does not matchthe real fault.
MR =

False Diagnosis

False Diagnosis + True Diagnosis
(4.5)

The indicators presented above are related to the performance of the FFD model and its implementation. An idealFFD system will achieve a FAR=0%; MDR=0%; Accuracy=100%; DT=10 min and MR=0. The DT of 10 minutes is theminimum for this algorithm, as it is the period needed to a consistent fault.
The FIRCOPdiagno indicator represents the fault impact ratio (FIR) value for the COP, which is calculated as the ratiobetween the feature at fault and nominal fault free conditions for COP, when the system is able to diagnose a fault.A FIRCOP=1, means that there is no impact on the COP. It gives an indication of the degree of deterioration of thesystem when the FDD system is able to isolate a fault.

FIRCOP = 1 − COPunfaulted − COPfault

COPunfaulted
(4.6)

Figure 4.6 shows how the fault detection works. The COP from the heat pump is far from the prediction due afault, LL in this case. With this difference, each data point increases the fault ratio. When the time period ends, ifthe fault ratio is above 80%, the warning flag is triggered.
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Figure 4.6: Fault detection for a LL fault in a static test. The fault ratio is the accumulated number of deviationsin a certain time period. After this period, if the fault ratio is above 80%, a warning is triggered.

Table 4.2 shows the indicators for all the static tests. A one-hundred per cent of accuracy and 0 FAR indicatesthat this is a robust method. In this way, the user can be sure that no warning can be a false alarm.
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Table 4.2: Performance values for the FDD. "-": FDD did not reach a prediction.Code FAR (%) MDR (%) Accuracy (%) DT (min) FIRCOP COP drift (%)EF10.1 0 - 100 - 1.00 0EF10.2 0 - 100 - 1.00 0EF10.3 0 - 100 - 0.99 1EF10.4 0 - 100 - 0.99 1EF10.5 0 - 100 - 0.98 2EF10.6 0 33 100 22 0.97 3EF10.7 0 16 100 9 0.96 4EF10.8 0 19 100 5 0.95 5EF12.1 0 - 100 - 0.99 1EF12.2 0 - 100 - 0.99 1EF12.3 0 - 100 - 0.98 2EF12.4 0 - 100 - 0.97 3EF12.5 0 - 100 - 0.97 3EF12.6 0 - 100 - 0.96 4EF12.7 0 - 100 - 0.94 6EF12.8 0 16 100 11 0.93 7CVL10.1 0 - 100 - 1.00 0CVL10.2 0 - 100 - 1.00 0CVL10.3 0 - 100 - 1.00 0CVL10.4 0 - 100 - 0.98 2CVL10.5 0 31 100 14 0.78 22CVL10.6 0 15 100 6 0.71 29CVL10.7 0 - 100 - 0.79 21CVL12.1 0 - 100 - 1.00 0CVL12.2 0 - 100 - 1.00 0CVL12.3 0 - 100 - 1.00 0CVL12.4 0 19 100 13 0.89 11CVL12.5 0 0 100 6 0.69 31CVL12.6 0 30 100 10 0.53 47LL10.1 0 - 100 - 1.00 0LL10.2 0 23 100 22 0.93 7LL10.3 0 31 100 17 0.86 14LL10.4 0 - 100 12 0.82 18LL10.5 0 33 100 19 0.74 26LL10.6 0 26 100 17 0.65 35LL12.1 0 - 100 - 0.98 2LL12.2 0 33 100 17 0.87 13LL12.3 0 25 100 7 0.81 19LL12.4 0 7 100 15 0.76 24LL12.5 0 - 100 - 0.69 31RO10 0 33 100 17 0.79 21RO12 0 33 100 13 0.81 19
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Figure 4.7 shows the FIRCOP versus the absolute FI of each fault. The LL fault is not represented as the FI couldnot be determined. Except for OC, for higher loads, the COP drift is higher. OC and CVL have a high impact on theCOP.

Figure 4.7: Absolute fault intensity versus COP fault impact ratio for each fault and load.
TheMDR values are very dependent on the test itself. A false negative is considered when the algorithm detects 10minutes of steady state data and the COP has decreased 0.05 and the FDD algorithm does not trigger a warning. Asthe tests have a duration of 60 minutes and discarding all the noisy data, there are low numbers of those periods.Therefore, the extension of the tests to 2 hours would improve this indicator. The DT is below 20 minutes. Withoutconsidering the unsteady area at the beginning of each test due to the FI increase, the DT is usually 10 minutes.The FIRCOPdiagno is not shown directly as it can bemisleading. This indicator gives a value of the COP drift when thefault is first diagnosed, but for faults like RO and LL, the FIRCOP increases fast with lower fault levels. Therefore,it may seem that the FDD cannot diagnose for lower FIRCOP, but it is because there is no more data with lowerFIRCOP. In the same line, it can be stated that the algorithm detect COP drifts below 7% as it can be seen in the EFand LL faults. For the higher levels of CVL the algorithm could not predict because the condenser temperaturesare out of the trained conditions, as the heat pump cannot cover the demand.
4.4.3 Fault diagnosis

The diagnosis methodology is based on trend values obtained from a literature review. As can be seen in Table 3.4in section 3, the trends for this heat pump are different from the ones published in the literature. A test made withthe old trend-chart showed that none of the test faults could be diagnosed correctly. E.g. for EF, the older versionof the diagnosis module expected the Tco to increase, but it remains the same in the tests, therefore it will not bediagnosed as EF. Therefore, the diagnosis module was updated with the trends for this heat pump. The results ofMisdiagnosis rate (MR) with this change is shown in Table 4.3. With the update, there is no misdiagnosis for anyfault. However, for EF and higher demands of CVL, the algorithm could not diagnose the fault.
The differences between the trends obtained from literature and the ones obtained from the tests showed thatthis diagnosis method could not be generalized to other heat pump typologies. If more tests are made with differ-
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ent variable-speed heat pumps, this method could be more flexible and less specific to the heat pump typology.However, the diagnosis module was not an objective of the TRI-HP project. Because of that, the diagnosis modulecould be improved as a result of future research projects.
Table 4.3: MR values for the updated diagnosis moduleCode MR (%)EF10 -EF12 -CVL10 0CVL12 0LL10 0LL12 0RO10 0RO12 0
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5 CONCLUSIONS AND FUTURE STEPS
This deliverable describes the methodology and the experimental validation of the developed FDD algorithm. TheFFD algortihm was first developed using data obtained emulating faults on a heat pump model implemented inModellica and literature data. Afterwards it has been validated with real heat pump faults.
Different faults have been emulated on a variable speed compressor heat pump. Using the data from normalbehaviour for training, the fault data has been used to test the FDD. Some parameters as the steady-state detectorand the diagnosis chart have been adapted respect to the previous implementation using data obtained froma numerical heat pump model. However, the detection procedure has remained the same. The algorithm hasdetected all the faults before a high COP drift and diagnosed some of them. The main conclusions derived fromthis work are the following:

• The input variables for the regression model must pertain to the external conditions of the heat pump. Inthe beginning, the compressor speed was one of those input variables. However, in the majority of faults,the compressor speed changes with the same environmental conditions. Therefore, the algorithm will be ina situation not trained, and the prediction could be erroneous.• The compressor speed is a crucial feature to diagnose faults. Although other indicators as refrigerant massflow and electric power consumption can be related, the compressor speed is a feature that can indicate apossible fault.• The fault emulation has contributed new data to the field. There are few studies about the fault impacts onvariable-speed heat pumps. The data obtained in this work will be helpful for future developments.• The FDD system has a performance that fulfils project’s quantitative objectives of performance loss detec-tion sensitivity. It can detect fault behaviour with a COP performance loss around 7 % with a 10 minutesresponse time, while the project goal was to detect a 10 % COP drift. The detection time threshold has in-creased compared to the theoretical results of the FDD using simulated data. However, this was expected,due to the noise and measurement uncertainty.• The diagnosis module could diagnose correctly four of the five different faults. But it may not have thesame results for different heat pump types. The expert knowledge methodology depends on the developerand the experience in the field. If more data become available about faults on different variable speed heatpumps, this method could be used in different heat pump technologies.
The detection algorithm was developed in Python and run from an industrial computer in the laboratory. However,to test the method portability, the same algorithm has been working real-time in a Raspberry Pi [1], which is aportable, low-cost computer. The results are the same shown in this document. In future, this FDD needs to beincluded and tested in a portable platform in the field.
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